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This paper discusses the theory of the generation of sound which occurs when 
a frozen turbulent eddy is convected in a mean flow past an airfoil or a semi- 
infinite plate, with and without the application of a Kutta condition and with and 
without the presence of a mean vortex sheet in the wake. A sequence of two- 
dimensional mathematical problems involving a prototype eddy in the form of 
a line vortex is examined, it being argued that this constitutes the simplest 
realistic model. Important effects of convection are deduced which hitherto have 
not been revealed by analyses which assume quadrupole sources to be at rest 
relative to the plate or airfoil. It is concluded that, to the order of approximation 
to which the sound from convected turbulence near a scattering body is usually 
estimated, the imposition of a Kutta condition a t  the trailing edge leads to a 
complete cancellation of the sound generated when frozen turbulence convects 
past a semi-infinite plate, and to the cancellation of the diffraction field produced 
by the trailing edge in the case of an airfoil of compact chord. 

1. Introduction 
This paper is concerned with the effect of vortex shedding on the efficiency of 

sound generation by convected turbulence. It is known (Ffowcs Williams & Hall 
1970; Crighton & Leppington 1970) that the intensity of aerodynamic noise is 
greatly enhanced when the sound-producing turbulent quadrupoles (Lighthill 
1952) are located near non-uniformities in the flow, such as the sharp edges of a 
strut or splitter plate. In  the presence of a large-scale mean flow there is also the 
possibility that velocity fluctuations induced by convected turbulence will result 
in the generation of additional noise-producing inhomogeneities in the form of 
vorticity shed from trailing edges and projections and subsequently swept down- 
stream. Vortex shedding will occur in regions of high shear where viscous effects 
are significant and in a manner which tends to diminish the large gradients in the 
flow velocity which might otherwise occur. In  treating such questions analytically 
the precise details of the vorticity generation process can often be ignored, for 
example the rate of production of vorticity at a trailing edge may be determined 
by requiring that the fluctuating velocity be finite at the edge (Kutta condition). 
This is the procedure used in classical thin-airfoil theory (see, for example, 
von Kkm&n & Sears 1938; Filotas 1969; Graham 1970; Mugridge 1971) in 
determining the fluctuating lift produced by a turbulent gust. 
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When the characteristic frequency of the disturbed motion is in the audible 
range there is considerable uncertainty regarding the validity of the Kutta condi- 
tion. It would clearly be incorrect to impose a full Kutta condition at frequencies 
exceeding the characteristic inverse response time associated with viscous effects 
at an edge. However, Jones (1972) has examined a model problem involving the 
generation of sound by a stationary line source located in the vicinity of the 
trailing edge of a large airfoil, and reports no significant acoustic response arising 
from the imposition of the Kutta condition. This may be contrasted with the 
prediction of Crighton (1972) concerning the edge diffraction radiation induced 
by the unstable oscillations of a vortex wake. Crighton developed his analysis 
from earIier work of Orszag & Crow (1970), and concluded that, a t  low mean-flow 
Mach numbers M ,  the application of a Kutta condition at the edge resulted in an 
increase in the acoustic intensity, the sound pressure level varying as M 2  rather 
than M4 (the dependence in the absence of additional vortex shedding). A similar 
dependence on the mean-flow Mach number has been predicted by Davies (1975), 
who applied Crighton's argument to the case of a large airfoil in the presence of 
a uniform mean flow. Recently Crighton & Leppington (1974) and Morgan (1974) 
considered the excitation of a semi-infinite vortex sheet by an impulsive line 
source located in fluid a t  rest. The Kutta condition was imposed, but apparently 
had no appreciable influence on the intensity of the radiated sound. 

It is a major contention of the present paper that the conflicting conclusions of 
the investigations cited above have arisen because of inadequacies in the mathe- 
matical modelling of the interaction of a real aerodynamic source with a trailing 
edge. That this can be an important issue has been demonstrated quite recently 
by Howe (1975a), Ffowcs Williams & Lovely (1975) and Crighton (1975), who 
showed that the simple point-dipole representation of the acoustic effect of turbu- 
lence close to a compact rigid body (Curle 1955) leads to an incorrect prediction 
of the Doppler amplification of the sound in the presence of a mean flow. Similarly 
Dowling (1 976) has shown by reference to simple model problems involving real 
sources that sound radiated at 90" to the flight path of an aircraft can experience 
amplification due to forward flight, contrary to earlier views based on the 
consideration of distributions of ideal acoustic dipoles and quadrupoles. 

In  this paper we examine a sequence of mathematical problems intended to 
model as realistically as possible the mechanism by which sound is generated as 
a turbulent eddy is convected in a mean flow past an airfoil or a sharp edge. In  
order to facilitate the analysis i t  will be assumed that the characteristic mean- 
flow Mach number M is sufficiently small that M 2  < 1.  This permits the mean flow 
to be regarded as incompressible, with constant sound speed, but does not 
eliminate the convective effect of the flow on the generated sound, which is 
already present a t  O ( M ) .  It also enables one to determine the flow in the neigh- 
bourhood of a compact airfoil and near the trailing edge of a large airfoil by means 
of the powerful techniques of classical, incompressible potential flow theory. The 
analysis is restricted to two-dimensional problems, the turbulence being 
modelled, in the main, by a convected line vortex, which may be regarded as 
a prototype two-dimensional turbulent eddy. An elegant discussion of problems 
of a similar nature has been given by Levine (1975), although the effects of a mean 
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flow and vortex shedding were not included. Here, however, we shall be con- 
cerned principally with determining the manner in which the shedding of 
vorticity during the passage of the turbulent eddy past the trailing edge modifies 
the properties of the radiated sound. 

In  $ 2  the general aerodynamic noise problem is formulated in terms of the 
Lighthill (1952) acoustic-analogy theory in the form developed by Howe (1975 b ) ,  
which describes the generation of sound by vorticity and by entropy gradients. 
The two basic model problems to be considered are then described, and the equa- 
tions are specialized to a form appropriate for their solution by means of the 
theory of Green’s functions. That theory is then applied ($3)  to problems of 
sound generation by turbulence convected past a compact airfoil, comparison 
being made with earlier work going back to von Kkm&n & Sears (1938). In  $ 4 
the case of a non-compact airfoil modelled by a semi-infinite plate is examined 
when the mean flow is the same on both sides of the plate. Then ( $ 5 )  the analysis 
is extended to cover the more interesting situation, relevant in any discussion of 
the problem of excess jet noise, in which the flow on either side of the plate has 
a different mean velocity, giving rise to the presence of a mean vortex wake. This 
characterizes the problem of sound generation by turbulence exhausting from 
the jet pipe of an aircraft engine in flight. 

It is concluded that a t  low mean-flow Mach numbers the application of a Kutta 
condition, with the consequent smoothing of the disturbed flow in the vicinity of 
a trailing edge, always leads to a beneficial reduction in the level of the radiated 
sound. 

2. Formulation of the aerodynamic sound problems 
We consider an ideal gas and suppose that i t  is permissible to neglect dissipa- 

tion due to viscosity and heat conduction during the passage of a turbulent eddy 
past the airfoil. The specific entropy S of a fluid particle therefore satisfies 

DSIDt = 0, (2.1) 

DIDt being the material derivative with respect to time. The stagnation enthalpy 
is taken as the fundamental acoustic variable and is defined by 

B = w + &v2, (2.2) 

where w is the specific enthalpy and v the fluid velocity. B is determined in terms 
of the vorticity o and the entropy gradient V S  by the inhomogeneous wave 
equation 

1 Dv 
c2 Dt ( g ( $ g ) + 2 E . V - V 2  1Dv 

\ B - div(wr\v-TVq--- .(wnv-TVS) (2.3) I -  
(Howe 1975 b ) .  Here c and T denote respectively the local speed of sound and the 
fluid temperature. 

In  regions of the flow exterior to those occupied by distributions of vorticity 
and entropy gradients, p = p(p ) ,  where p is the density, and the specific enthalpy 
becomes 

w = J T .  
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FIGURE 1. Generation of sound by a convected line vortex and shed vorticity. The airfoil 

is two-dimensional, of chord 2a and is set at zero incidence to the mean stream. 

FIGURE 2. Generation of sound by a convected line vortex and wake vorticity in the case 
of a semi-infinite plate. The mean-flow velocity in the +xl direction is U, in x, > 0 and 
lJ2 in xz < 0, with corresponding mean densities and sound speeds pl, pz and cl, c2 respec- 
tively. The origin of co-ordinates is taken at the edge of the plate. 

It follows that in a reference frame convecting at the local mean velocity the 
perturbation in B is p/p,,, where p is the acoustic pressure fluctuation and po the 
local mean density. 

Figures 1 and 2 illustrate the general characteristics of the problems to be 
examined. The classical problem of the gust loading of an airfoil located a t  rest 
in a stream of mean velocity U in the +xl direction is depicted in figure 1. The 
airfoil is assumed to be a rigid flat plate at zero incidence extending from x1 = - a 
to x, = +a in the plane x2 = 0. In  all eases the model is taken to be two-dimen- 
sional, conditions being uniform in the z3 direction, which is taken out of the 
paper. The incident gust or turbulent eddy consists of a line vortex of strength I’ 
parallel to the edge of the airfoil, although in $ 3  the case of a spatially unbounded, 
harmonic gust is also examined. Detailed calculation will be undertaken only 
on the basis of linearized airfoil theory, which requires the vortex strength I’ 
to be sufficiently small that the path of the vortex is insensibly different from 
z2 = h = constant, during its passage past the leading and trailing edges of the 
airfoil. When a Kutta condition is imposed a t  the trailing edge there will be an 
additional distribution of shed vorticity in the wake, which is assumed to 
constitute an infinitely thin vortex sheet whose elements are swept downstream 
a t  the mean velocity U. The linearization also implies that the incident vortex 
convectsat themean streamvelocity, although it is convenient to denote this con- 
vection velocity by V,  on the understanding that ultimately we must set U, = U. 

In  figure 2 the finite airfoil is replaced by a semi-infinite rigid plate occupying 



InJluence of vortex shedding on sound generation 715 

x1 < 0, x, = 0. In  the general case the mean flow velocities and mean fluid 
densities are respectively U,, U, and pl, p, on the upper (x2 > 0) and lower (x, < 0) 
sides of the plate and the vortex sheet in the wake. Again, the two-dimensional 
linear theory of the excitation of the system by a line vortex I? convected a t  
velocity V,  past the edge of the plate along the path x,  = h > 0 is considered. 
This problem models the generation of sound by turbulence swept out of an 
aircraft engine's jet pipe in flight. The particular case in which Ul = U, = U and 
p1 = p, = po is also examined, and provides a description of the generation of 
sound when the chord 2a of the airfoil of figure 1 greatly exceeds the charac- 
teristic acoustic wavelength. The frequency of the generated sound is of order 
U/h, corresponding to a wavelength O(h/M),  so that this case will be appropriate 
provided that M B h/2a. 

I n  order to formulate these problems mathematically we must first determine 
the linearized forms of the inhomogeneous source terms on the right of (2.3). The 
incident line vortex I? is specified by the singular distribution of vorticity 

o = r16(xl - V,t) 6(x, - h), (2.5) 

where 1 is a unit vector parallel to the x3 axis. Observe that this particular choice 
for the incident eddy enables the case of an arbitrary two-dimensional distribu- 
tion Q(x1 - U,t, x,) of frozen vorticity to be analysed by making use of the identity 

and the principle of superposition. 

form of the source term associated with the incident vortex is precisely 
Thus, noting that the mean convection velocity V,  is steady, the linearized 

div (o A v) 2: I'V, a{6(xl - V,t)6(x, - h)}/ax,. 

Since the unsteady motion induced by the passage of the vortex past the 
trailing edge can result in the shedding of additional vorticity and in the perturba- 
tion of an existing mean vortex wake, there is also a distribution of unsteady 
vorticity and entropy gradient, which on linear theory lies in the plane x ,  = 0, 
x1 > 0. We assume that this wake may be adequately approximated by a vortex 
sheet, in which case o A v - TVS vanishes on either side of the sheet, and may 
therefore be represented by a singular distribution 

(2.8) 

where n is the unit normal to the sheet, 7(x l ,  t )  its displacement from the mean 
position and v, the ncjrmal velocity of the sheet (cf. the analogous discussion 
of entropy spots given by Howe 1975b). The strength Z of the singularity is 
obtained by integrating the momentum equation written in Crocco's form, 

o A v - TVS = Z(x, t )  S{x, - 7(x l ,  t ) }  n + w A v,, say, 

avpt + VB = - (0 A v - TVS), (2.9) 

across a small interval normal to and enclosing the sheet. If [ 1; denotes the jump 
in crossing the sheet in the + x,  direction, this gives 

Z=I(oAV-TV8).dX=-[B]i,  (2.10) 
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since &/at is finite. But the %ow on either side of the sheet is irrotational with 
potentials q51 and q52, say. Further, Bernoulli’s equation implies that on either side 

- .  
so that we may also write 

(2.11) 

(2.12) 

Now 2 is generally non-zero even in the absence of an incident disturbance 

z = -B, + [a+/at-j;, (2.13) 

where the constant B, denotes the jump in the mean value of the stagnation 
enthalpy across the sheet, and the term in square brackets represents the per- 
turbation produced by the eddy. Thus, using (2.7) and (2.8) in the right-hand side 
of the inhomogeneous wave equation (2.3), and linearizing with respect to the 
perturbation source terms, we obtain 

because of the presence of the mean vortex sheet and density gradient. Set 

a 1 Dv 
4- - {(v, - U2) VUn S(x2)l- div {V[BOH(f)ll f s z  . V[BOH(f)I, (2.14) 

the second and third terms on the right-hand side being non-zero only in the 
wake of the airfoil. I n  this result f zf(x, t )  = x2-~(zl,  t )  is the equation of the 
vortex sheet and H(x) the Heaviside unit function. The sheet always lies along 
an instantaneous streamline, so that Df/Dt = 0 and the terms involving B, on 
the right of (2.14) may therefore be absorbed into the wave operator on the 
left-hand side. Hence, if B is re-defined as the perturbation in the stagnation 
enthalpy about its local mean value, we have simply 

8x1 

It is apparent from this that only fluctuations in the values of the wake source 
terms in a reference frame moving with the vortex sheet actually generate sound. 
This is a particular example of a general result obtained by Ffowcs Williams 
(1974). 

At low mean-flowMach numbers, Gmaybe assumed to be constant on each side 
of thevortex sheet, and when thewave operator is also linearized (2.15) reduces to 

where D/Dt = a/at + TJ a/ax,, U being the local mean-flow velocity. 
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In  the absence of a discontinuity in the entropy S across the vortex sheet, it is 
convenient to have available an alternative representation of the wake source 
term of (2.16). The mean density is now uniform, and continuity of pressure 

(2.17) 
implies that 

In particular, when U2 = U, = U ,  

[a$/at]; = - [u a$/axll; = u2u2 - u,u,. 

[a$/atI: = U(U2 - u1) = UY(X1, t ) ,  (2.18) 

where y(xl, t )  is the circulation density in the wake. Equation (2.16)now becomes 

To complete the mathematical formulation we now specify the conditions 
under which the radiated sound is to be determined. The acoustic response of 
a turbulent eddy in the presence of a scattering body is greatest when it is located 
well within a characteristic wavelength of the body (Crighton & Leppington 
197 1). I n  the problems under consideration that wavelength is O(h/M),  and will be 
assumed to be large compared with the chord 2a of the airfoil of figure 1, so 
enabling the flow in the neighbourhood of the airfoil which determines the fluctu- 
ating wake circulation y(xl ,  t ) ,  to be regarded as incompressible. I n  the case of 
the semi-infinite plate of figure 2 we shall suppose that M is sufficiently small 
that the distance of the incident vortex from the edgeof the plate is always 
much less than the acoustic wavelength. The characteristic wavelength is now of 
order Ro/M, where R, is the instantaneous distance of the vortex from the edge 
of the plate (cf. Howe 1975 b, § 5 ) ,  and this implies that the restriction will be 
true for all vortex positions if it is satisfied for R, = h. Again the properties of the 
vorticity may then be determined by means of incompressible flow theory. 

After the incident vortex has passed the trailing edge and the shed vorticity 
has been swept downstream by the mean flow, the residual acoustic radiation 
arises solely from the nonlinear self-interaction of the vortex field. In  two- 
dimensional, low Mach number situations the intensity of the sound is then 
proportional to M7. In  the neighbourhood of a compact airfoil (figure 1) or of the 
edge of a semi-infinite plate (figure 2) the intensity of the sound generated by 
a two-dimensional eddy generally varies respectively as M6 and H4 (Ffowcs 
Williams 1969), and we shall be interested in calculating only these more powerful 
components of the radiated sound. 

In  these circumstances the radiation may be calculated by making use of the 
appropriate Zow frequency Green’s function (Howe 1 9 7 5 ~ ) .  This method has been 
applied to an extensive range of aerodynamic noise problems by Howe (I975 a, b )  
and Ffowcs Williams & Howe (1975). The Green’s function G(x, y, t ,  7 )  is defined 
as the particular solution of 

{ $ g - $ ] G  = 6(x-y)6( t -~)  (2.20) 

which satisfies the radiation condition and the condition of vanishing normal 
derivative on the rigid surfaces of the airfoil. The solution B(x,  t )  of (2.20) in the 
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FIUURE 3. Illustrating the definition of the low frequency Green's function (2.22) for the 
compact airfoil. The airfoil lies between x1 = If: a on the z1 axis, and the figure shows the 
locus of points of constant X ,  defined in (2.23) in the case in which the observer's direction 
0 = 70".  At large distances X ,  N q and the loci become straight lines normal to the 
0 direction. 

case in which the impulsive point source is replaced by a distribution f(x, t )  is 
given by means of the convolution integral 

(2.21) B(x, t )  = Jf(Y, -7) G(x, Y, t ,  -7) d3Y d?-. 

For the airfoil of figure 1 
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where M = U/c, X 3  = x3 and when j denotes a direction normal to the x3 axis, 
Xj represents the potential of incompressible flow about the airfoil which at large 
distances is of unit velocity in t h e j  direction (Howe 1975a). In  particular, when 
this direction makes an angle 0 with the direction of the mean flow (figure 3) and 

(2.23) 
z = x1 + ixz,  then Xi = Re {z cos 8 - i(x2 - a2)* sin O}, 

so that Xi -+ Re {z tie} = xj as xj/a+ a. The approximation involved in (2.22) is 
appropriate provided that M 2  < 1, the airfoil is compact, and either the source 
point y or the observation point x is located many characteristic wavelengths 
from the airfoil. 

The corresponding form of the Green's function for the semi-infinite rigid plate 
of figure 2 is (Howe 1975 b )  

6 t - r -  (2.24) '*(x)'*(y) 7r 1x1 { G(x, Y, t ,  7) = 

This is only suitable for dealing with two-dimensional problems in which the 
observation point x = (xl, x2) is located many characteristic wavelengths from 
the edge of the plate and the source position y is well within a wavelength of 
the edge. The function $*(x) is the potential describing incompressible flow 

(2.25) 
about a rigid half-plane: $*(x) = H s i n  i0, 

where (xl, x2) = R(cos 8, sin 0). The argument of the &function in (2.24) depends 
on the mean-flow Mach number H. In  the presence of a mean vortex sheet, as in 
figure 2, the appropriate value for M is that of the mean stream in which the ob- 
server is located. The Green's function (2.24) takes account of diffraction of the 
near field of the aerodynamic sources by the semi-infinite plate, but not of the 
subsequent scattering by the wake. That is a lower-order effect (see 3 5) except for 
observation directions making grazing angles with the wake. But this is of no real 
significance, since in any event exact linear theory cannot account for the secular 
multiple scattering of the sound which occurs in the wake (see, for example, 
Howe 1974). It follows from (2.25) that a$*jaxl vanishes identically in the 
wake x2= 0, x1 > 0 of the semi-infinite plate; this implies that the final 
source term on the right of (2.16) makes no contribution to the radiated sound 
and so will be omitted. 

3. Convection of turbulence past a compact airfoil 
In  the classical theory (von K k m h  & Sears 1938) the fluctuating lift on a thin 

airfoil located a t  rest in a uniform mean stream of velocity U is calculated for 
a convected two-dimensional gust or eddy whose incompressible velocity 
perturbation is specified by 

u = (a, v) = A exp [i(kl(xl - Ut) + k2x2)], (3.1) 

A being a constant vector. In  principle the case of an arbitrary two-dimensional 
eddy may then be analysed by superposition. This is also the method that is 
usually applied to determine the sound generated during the passage of an eddy 
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past an airfoil (a general review is given by Goldstein 1974). Indeed, according to 
Curle’s (1955) extension of Lighthill’s theory, the fluctuating lift force on a com- 
pact body furnishes the strength of an equivalent acoustic dipole. This is different 
from the procedure outlined in the previous section, in which the sound is 
regarded as generated by the fluctuating vorticity, so that before proceeding to 
the discussion of the problem depicted in figure 1 we shall first establish the 
identity of our approach with the Curle theory. 

Consider a line vortex of strength I” located in the z plane at the point with 
complex position z,, = xl + ix,. By means of the conformal transformation 

22 = 5 + a,/[ (3.2) 

the airfoil in figure 1 is mapped into a circle of radius a in the 5 plane, and the line 
vortex into the point $, say. The complex potential in the 5 plane due to this 
vortex may be written in the form 

(3.3) 

(von K&rm&n & Sears 1938), an expression which means that net circulation 
about the plate is absent. However the transformation (3.2) implies that the 
velocities at the edges of the plate are infinite. If a Kutta condition is to be 
imposed to remove the singularity at the trailing edge, vorticity must be gen- 
erated there and shed into the wake, where it is swept downstream by the mean 
flow. Let 7 = y ( t )  dc denote the strength of an elementary shed vortex located 
at x = t > 0 on the x1 axis. This lies at the point f ,  say, in the 6 plane and the 
appropriate form for the corresponding induced potential flow is 

w7 = ( - i7/2n) {In [g- 6’1 -In [6- a2/t11}, (3.4) 

which satisfies the additional constraint imposed by Kelvin’s theorem (Lamb 
1932, p. 36) that the total circulation about the plate and the shed vortex should 
vanish. The complete expression for the velocity potential involves a summation 
over all of the shed vorticity: 

The velocity will remain finite a t  the trailing edge g = x = a provided that 
(dw/dz),=, is finite, and the above expressions imply that this will be the case if 
y(()  satisfies the von K&rm&n-Sears equation 

w = wr*+Cw,. (3.5) 

(3.6) 

where the integration is taken along the wake and 

Q = x1 + ix, + [(xl + ix,), - a2]k (3.7) 

(3.8) 

To apply this result to the harmonic gust (3.1), note first of all that the incident 
vorticity 

where k = (kl, k,). Since this may also be expressed in the form 

o = curl v = ik A A exp [i{kl(xl - Ut)  + k,x,)], 

o = ik A A exp [i{kl(Xl - Ut) + k,X,}] S(Xl - xl) S(X,  - x,) dXl dX,, (3.9) 
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the disturbance induced by the vorticity distribution (3.8) is equivalent to that 
which would be produced by an infinite array of line vortices located a t  points 
X = (X, ,  X,). The strength of these vortices is proportional to k A A, a vector 
of length klA2-k,Al  directed out of the paper. The gust is incompressible, 
which requires that k. A E k, A,  + k, A ,  should vanish, and it therefore follows 
that each elementary vortex is of strength 

r’(X) = iA2(k2,+k;)ki1exp [i{kl(Xl- Ut)+Ic,X,}]dXldX,. (3.10) 

The total shed vorticity must have the same harmonic time dependence and 

(3.11) 

is convected at the mean-flow velocity. Hence we can set 

Y = ?(t.> t )  = Yo exp c - ikl U{t - t./U}I. 

Substituting this and (3.10) into the integral equation (3.6) we find that 

where 5 is defined by (3.7). The integrals in this result may be reduced by 
elementary means to standard representations of Bessel functions given in 
Abramowitz & Stegun (1965, p. 360), formally divergent integrals being inter- 
preted where necessary as generalized functions. It is thereby deduced that 

70 = - 4iA,{Jo(k,a) + iJ1(k,a))/{H&”(k,a) + iHil)(kla)}. (3.13) 

We now have an expression defining the strength of the wake vorticity source 
term y ( q ,  t )  on the right of the inhomogeneous wave equation (2.19). Substituting 
for this term from (3.11) and using the low frequency Green’s function (2.22) for 
a compact airfoil, the contribution B, made by the wake to the acoustic radiation 
is given by the convolution integral 

). (3.14) 
C 

Taking account of the definition (2.23) of 5, we have for observation points x in 
the distant field 

’ (3.15) 
y1 sin 0 exp [i{k,  y, - k, U(t  - I X  - y3 ll/c + M . x/c) } ]  

X 
(Y; - a2)* lx -Y3 11 

where 0 is the angle between the observer’s direction and the + x ,  axis. The y3 
integral is performed by the method of stationary phase, and the integral with 
respect to y1 reduces to 

a fa exp (ik,aA) 7TU 
d A  = --@?)(k,~) (3.16) 

2 
y1 

exp (ik, yl) dy, = - i - ak, 1 ( A 2 - 1 ) i  

46 FLM 76 
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(Abramowitz & Stegun 1965, p. 360). It follows that 

Hil’(kl a) exp [ - i{kl U[t] - &>I, (3.17) 
4 

B, N 

where here and henceforth terms in square brackets are to be evaluated at the 
retarded time t - R/c( 1 + M cos 0), R being the distance of the observer from the 
airfoil. 

Similarly the vorticity distribution (3.8) determines the contribution made by 
the incident vorticity to the radiated sound. Inserting (3.8) into the vortical 
source terms on the right of the general equation (2.3), we have in the linear 

which is distributed throughout the whole of space. The convolution integral is 
now performed as before for an observer in the distant field, the final integration 
with respect to y1 reducing to a Bessel function, and we fhd that Br, the radiation 
from the incident vorticity, is given by 

Bp N A2Uasin8 r?f)’ - ~,(k, a) exp - i{kl ~ [ t ]  - in}]. (3.19) 

Equations (3.17) and (3.19) give the separate contributions to the radiation 
field arising respectively from the wake and the incident turbulent gust. The 
corresponding acoustic pressure fluctuation p is obtained by noting that 
Bernoulli’s equation (2.11) (with +v2 = U a$/&) implies that correct to the 
neglect of terms of order M 2  relative to unity 

B = (p/po) (1 +Mcos0). (3.20) 

Thus, adding (3.17) and (3.19) and making use of (3.13) and a well-known 
Wronskian for Bessel functions (Abramowitz & Stegun 1965, p. 360), it follows 
that 

- N  p 
po 

iA, U sin 0 (z) 4 exp [ - i{kl U [ t ]  - &}I 
- 

( 1  + M cos 0) 7rkl R {HS)(k,a) + iHi1-’(k1a)}‘ 
(3.21) 

This result coincides with that obtained by use of the fluctuating lift force to 
determine the strength of an equivalent acoustic dipole (the details are discussed 
by Goldstein 1974), and establishes the identity between the direct method 
presented above and that due to Curle (1 955). 

It is a simple matter to extend the analysis to the problem of figure 1. The 
incident vortical eddy is now the line vortex of (2.5). When a Kutta condition is 
imposed at the trailing edge the strength of the shed vorticity may be obtained 
by first expressing (2 .5 ) ,  with V, = U ,  in the form of a linear array of harmonic 
line vortices: 

m r 
o = -111 6(xl -yl) 6(x,- h) exp {iw(yl/U - t)}dy,dw. (3.22) 

2TU -* 

Let ~ ( 6 ,  w )  e-iot be the component of the wake vorticity of frequency w.  Then 
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use of (3.22) in the von K&rm&n-Sears equation (3.6) shows that ?((,a) is 
determined by 

where 5 = y1 + ih + {(yl + ih)2 - a2)*. Setting, as before, 

i t  follows by methods entirely analogous to those discussed above that 

For each value of w the acoustic field due to the wake vorticity is given by the 
convolution integral (3.14) with yo replaced by yo(@). 

The total sound field generated by the wake then follows by integration with 
respect to w. Making the substitutionp = wh/U and using (3.20), one finds for the 
acoustic pressure perturbation 

_ N  p irUasin0eiin (E)J 
po - 4nh( 1 + M cos 0) 2Rh 

where p* = + i [pl i  for ,u < 0. 
This integral may be evaluated explicitly in the two extreme cases (if a/h < 1 

and (ii) a/h B 1, corresponding respectively to a vortex passing a t  large and small 
distances from the airfoil. To do this we use the appropriate asymptotic approxi- 
mations to the Bessel functions in (3.26), and obtain in case (i) 

(3.27) 

where (Ro, 8,) are the polar co-ordinates of the incident vortex, 0, being measured 
from the + x1 direction, and the square brackets imply evaluation a t  the retarded 
time t - R/c( 1 + M COB 0). 

In  case (ii), a/h > 1, (3.26) reduces to 

1 rUsin6' M 4 EN 
po - 4 4  1 + M cos 0) (a) [{ 1 + (Ut  - u)2/h2} ' (3.28) 

where xl = U[t ] ,  x2 = h is the retarded vortex position. 
Turn attention now to the direct radiation produced by the line vortex con- 

vecting past the airfoil, and corresponding to the first term on the right of (2.19) 
with the convection velocity U, = U .  Using the representation 

~ ( x ,  - yl) exp zw - t dy, dw 
(u  )I S(q- Vt)  = - 

2n- l u /,I:" 
46-2 
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as in (3.22), it follows by convolution in the manner already described that in the 
distant field the pressure fluctuations associated with the vortex are given by 

Em - i ura sin B (cn) * efilr  

po - 4nh( 1 + M cos 0) 2Rh 

x Srn --m ptsgn (p) exp (- lpl- i2 h [ t ] )  J I E ) d p .  (3.29) 

In  the first of the asymptotic cases considered above (a/h < l), we have 

(3.30) 

which is seen to be an order of magnitude a/Ro smaller than the corresponding 
wake contribution (3.27). Of more interest, however, is the field strength in the 
case a/h % 1, when the vortex passes close to the airfoil. We now find 

The two contributions in the retarded-time brackets of this result may be 
interpreted as accounting respectively for the diffractive effects of the leading 
and trailing edges of the airfoil. Observe, however, that the dependence of the 
radiation is not symmetric in this respect, because in two-dimensional problems 
of the present type the instantaneous intensity of the field is determined by a 
weighted average over the entire previous history of the source distribution 
(Ffowcs Williams 1969). The significant feature of (3.31) is that the relatively 
strong diffraction field from the trailing edge x1 = U[t ]  = a is exactly cancelled 
by the acoustic field (3.28) produced by the wake vorticity when the Kutta con- 
dition is imposed. This is a first indication of the importance of vortex shedding 
in influencing the intensity of the sound generated by convected turbulence. 

In  conclusion we note that all of the radiation fields predicted in this section 
have p - pouUM4, u and U being respectively the perturbation and mean-flow 
velocities, which is characteristic of the two-dimensional, linear aerodynamic 
noise fields generated by turbulence near a compact solid. 

4. Convection of turbulence past a semi-infinite plate in a uniform 
mean flow 

The analysis of the previous section may be extended in an obvious manner to 
cover the problem of figure 2 when the mean-flow velocities U, and U, are both 
equal to U and p1 = p2 = po. Let a line vortex of strength I” lie in the z plane a t  
z = zo = X ,  +ih, the origin being located at the edge of the plate. The flow is 
mapped into the upper half of the C; plane by means of the transformation 
5 = id, so that the complex potential of the flow induced by the vortex I” and 
a shed vorticity distribution y ( t )  in the wake of the plate is readily seen to be 
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Imposing the Kutta condition a t  the edge of the plate we find that y(6)is 
determined by the equation 

1 
(X,+ih)*+(X,-ih)+ 

Introduce the representation (3 .22)  of the incident line vortex (with U set 
equal to the convection velocity q); then for each frequency component w, 

Performing the integration with respect to 6 we have 

The acoustic radiation produced by the wake for each w is now obtained by 
substituting (4 .3 )  into the wake source term of (2.19), and convoluting the 
resulting expression with the low frequency half-plane Green's function (2.24). 
Thus the distant pressure perturbations are given by the integral 

where use has been made of (3 .20)  and where M = U/c .  Observing that 
a$*(y)/ay, = +/yf on yz = 0, yl > 0, we find 

Replacing yo(w) by (4 .5)  and integrating with respect to w we have for the wake 
radiation 

x 8  X1-& t- ( ( c(l+McosO 
I? U sin 40 cos &O0 

(4.8) - - 
2nB+(1 + M  cos8) [Fly 

where the term in square brackets is evaluated at the retarded position (Roy 0,) of 
the incident vortex. 
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The direct radiation from the incident vortex is obtained by convoluting the 
first source term on the right of the inhomogeneous wave equation (2.19) with 
the half-plane Green’s function, and this gives in a straightforward manner 

the gradient being evaluated a t  the retarded position of the vortex. An 
elementary calculation shows that 

a$r*px, = cos (+S,)~ZR~, 
so that (4.9) becomes 

(4.10) 

Comparing this result with the wake radiation (4.8) we see that in the present 
approximation the acoustic field vanishes identically when the convection 
velocity of the incident vortex assumes its actual value V,  = U.  To place this 
result in context recall that terms nonlinear in the perturbation velocities have 
been neglected. Each contribution to the radiation (4.8) and (4.10) is of order 
p/po - uU, where u is a fluctuation velocity, and our result therefore indicates 
that in order to obtain radiation fields with the same parametric dependence on 
the flow velocity it is necessary to take explicit account of the departure of the 
path of the incident vortex from the rectilinear one x, = h. This is an essentially 
nonlinear effect produced by image vortices in the plate and by the shed vorticity. 
In  other words, when the Kutta condition is imposed the relatively strong radia- 
tion (4.10) due to the mean-flow convection of the eddy past the trailing edge is 
annihilated. 

This conclusion is considerably more dramatic than the partial cancellation 
already noted in relation to the compact airfoil. I n  both cases the effect of vortex 
shedding is to eliminate the strong diffraction radiation from the edge where the 
shedding occurs. Let us examine in more detail the nature of the local incompres- 
sible flow which accompanies this phenomenon. The imposition of the Kutta con- 
dition reduces the x, component of the perturbation velocity to zero at the trailing 
edge. When the incident vortex translates past the semi-infinite plate a t  the 
velocity of the mean stream, the application of the Kutta condition also implies the 
vanishing of the x2 component of the velocity a t  all points of the vortex sheet which 
constitutes the wake. It is perhaps of interest to present a detailed demonstration 
of this remarkable result. 

To do this use the f i s t  term in the velocity potential (4.1) to show that the 
x, component of the wake velocity induced at a distance xl > 0 from the edge of 
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the plate by the incident vortex is given by 

r&x1 - R,) cos go, 
VU,(Xl) = 

2nx+{X; - 2x,R, cos 8, + R;}' (4.11) 

The corresponding velocity component v due to the wake vorticity is deter- 
mined by the second term on the right of (4. l), and reduces to the principal-value 
integral 

(4.12) 

The wake vorticity y(f;) is obtained by integrating (4.3) with respect to w .  Thus, 
taking account of the definition (4.5) of yo(w), we have 

The integration with respect to y1 may be performed by means of the substitu- 
tion p = (yl ? ih)3, and yields 

The w integral is then straightforward and reduces (4.13) to 

) d 5 ,  (4.15) 
2)(x1) = "(")"mm[ 1 1 

4n2 u , X l  0 (xl-f;) f;-xou/~-f;-z,*u/u, 
where zo = U,t + ih is the position of the vortex at time t .  This may be evaluated 
by recalling that the principal value is equal to the mean of the two integrals 
passing just above and just below the pole at f ;  = x, > 0. The path of integration 
of the first of these is rotated in an anticlockwise sense through 360" about the 
origin, the resulting change in sign of (4 thereby annulling the second integral. 
The only contribution to (4.15) then arises from the poles of the integrand 
encountered during rotation, and we obtain 

It is now clear that this velocity is equal and opposite to that induced by the 
incident vortex and given in (4.11) only when the translation velocity of the 
vortex equals the mean stream velocity U. Thus, in the linear approximation 
(with Us = U ) ,  the vortex convects past the edge of the plate where just sufficient 
vorticity is shed to ensure that the normal velocity vanishes a t  all points of the 
plane x2 = 0. The flow conditions are then steady in a frame a t  rest relative to 
the vortex, so that no sound is radiated. 

We end this section with a discussion of the relation of the above analysis to 
previous work (Jones 1972) on the interaction of aerodynamic noise sources with 
a semi-infinite plate in the presence of a uniform mean flow. In  particular we 
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consider very briefly the situation in which the incident vortex dipole source is 
replaced by a stationary harmonic line monopole of strength m, represented by 
a singularity of the form md(xl -XI) 6(x2 - X , )  exp ( - iwt) on the right of the 
inhomogeneous wave equation (2.19). 

Allowing for the possibility of vortex shedding a t  the edge of the plate, a pro- 
cedure analogous to that leading from (4.1) to (4.2) yields the following integral 
equation for the distribution y(<) of circulation in the wake: 

(4.17) 

where (Ro, 0,) are the polar co-ordinates of the line source. The substitution (4.3) 
gives 

(4.18) 

and when this is inserted into (4.7) we frnd that in the distant field the pressure 
fluctuation induced by the wake is given by 

Correct to an error of order M relative to unity, this agrees with the result 
obtained by Jones (1972), who applied the Wiener-Hopf technique to the 
equations of linear compressible flow theory. 

5. Interaction of convected turbulence with a semi-infinite mean 
vortex sheet 

We now turn to a consideration of the general problem of figure 2 in which the 
vortex is located in a mean stream of velocity Ul and density p1 and convects past 
the edge of the semi-inhite plate at velocity V,. The flow in the ‘ambient’ 
medium xp < 0 has mean velocity U2 and density pz. The local details of the flow 
in the neighbourhood of the edge of the plate are determined by means of linear- 
ized incompressible flow theory, as before, and this requires that the mean-flow 
Mach numbers satisfy A?:, iw; < 1. 

The analysis of this problem is complicated by the inherent Kelvin-Helmholtz 
instability of the mean vortex sheet. Accordingly, before proceeding to the 
general case we first examine the nature of this difficulty by reference to a 
simplified canonical problem discussed by Crighton (1972). 

Sound generation by a vortex-sheet instability 
A vortex sheet leaving a semi-inhite plate executes a two-dimensional, Kelvin- 
Helmholtz, spatially growing instability motion. I n  terms of the notation of 
figure 2, it  is assumed that p1 = p, = pa, say, Ul = 0, and that the unstable motion 
is harmonic in time with radian frequency w > 0. There is no incident disturbing 
vortex or eddy. Such a mode of oscillation constitutes an eigensolution of the 
problem. 
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In  the particular case in which the Kutta condition is not imposed at the edge 
of the plate, Crighton obtains an integral expression for linearized compressible 
potential flow on either side of the vortex sheet, and deduces that, in the limit of 
small mean-flow Mach number N,, the acoustic pressure perturbation far from 
the edge and in the region x,  > 0 where there is no mean flow is given by 

In this expression (R,8)  are the polar co-ordinates of the distant observation 
point, as defined in the previous section, and an error in the sign of Crighton's 
original result has been corrected (Crighton 1976, private communication). The 
constant A denotes the amplitude of the exponentially growing instability mode 
[see equation (5.3) below]. A spatially growing mode of this form is possible even 
in the absence of a plate, but in that case the disturbed flow on either side decays 
exponentially with distance from the mean position of the sheet. The sound field 
(5.1) is therefore produced through the interaction of the instability wave with 
the edge of the plate. Indeed the detailed calculations of Mohring (1975) and of 
Bechert & Michel (1975) reveal that this interaction is restricted essentially to 
points of the flow lying within a distance of order U2/w from the edge of the plate. 

Define K and i? by 
w W 

K = -(1 +i) , i?= -(l-i). 
u2 0 2  

When the sound speed is allowed to become infinite in Crighton's (1972) exact 
solution, we obtain representations of the potentials q51 and q5, which respectively 
describe incompressible flow in x2 3 0. On the mean position (x2 = 0, x1 > 0 )  of 
the vortex sheet these assume the following simplified forms: 

g1 = A exp {i(i?xl - wt)}  - A exp { ~ ( K X ~  - wt - in)}, 
q52 = - iA exp {i(Kxl - wt) )  - iA exp { ~ ( K X ~  - wt - an)}, (5.3) I 

the fist term on the right of each equation growing exponentially with distance 
downstream. 

According to the inhomogeneous wave equation (2.16) (in which I' is set equal 
to zero and the term in v, is discarded), the discontinuity specified by (5.3) in 
the perturbation potential across the vortex sheet results in the generation of 
sound. In  the previous section the sound was determined by convoluting the 
wake source with the low frequency half-plane Green's function (2.24). Adifficulty 
arises in the present case in applying such a procedure because the exponential 
growths of q51 and q52 with distance from the edge of the plate imply the 
divergence of the convolution integral. 

Now it has already been noted that, in the absence of the plate, the subsonic, 
linearized compressible equations of motion admit exact time-harmonic solutions 
growing exponentially with distance x1 along the sheet, but decaying exponen- 
tially with distance on either side of the sheet. A disturbance of this form does not 
correspond to a sound wave. On the other hand, when the motion of the boundary 
x,  = 0 produced by the instability is taken as specified, the problem of deter- 
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mining the flow on either side of the sheet may then be posed. The solution can 
be expressed as a convolution integral of the free-space Green’s function and the 
boundary motion (see, for example, Morse & Ingard 1968, p. 366), and again we 
encounter the difficulty of interpreting a formally divergent integral. In  this case 
the problem is resolved by temporarily removing the exponential growth by 
allowing the frequency w to assume a complex value, the result for real w being 
subsequently obtained by analytic continuation. 

This procedure, which is discussed in more detail below, may be applied to 
Crighton’s problem by requiring that w should lie in the wedge $71 < arg w < an. 
The second source term on the right of (2.16) becomes for x1 > 0 

- [i - i] exp (i(xxl - wt - $7~))) 6(x,)). (5.4) 

Convoluting this with the low frequency half-plane Green’s function (2.24) (with 
Hl = 0 for an observer in x2 > 0 ) ,  we obtain in the distant field 

Making the substitution p = y$ and using (5.2), the integral becomes 

2i(U2n28/w)9 e+, 

which on substitution into (5.5) reduces the result to Crighton’s low Mach number 
approximation (5.1). 

Note that, as mentioned in § 2, the use of the Green’s function (2.24) implicitly 
neglects the scattering of the sound generated near the edge of the plate by the 
vortex sheet. The agreement of our result with (5.1) indicates that the approxima- 
tion involved is adequate, and would be expected to involve an error which is 
O ( M )  smaller. 

Linear theory of the incompressible motion of a line vortex near 
a semi-inJinite vortex sheet 

We now return to the general problem of figure 2. It is required to determine the 
sound radiated into the ambient flow region x2 < 0 when the line vortex convects 
past the edge of the plate. The first step involves the determination of the incom- 
pressible flow in the neighbourhood of the edge. Related problems have been 
investigated by Orszag & Crow (I 970), and more recently by Mohring (1 975) and 
Bechert & Michel (1975). Mohring’s analysis entailed a rather general, function 
theoretic discussion, and is not easily modified to deal with the present case. The 
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work of Bechert & Michel, on the other hand, did not take explicit account of the 
infinite set of eigensolutions of the semi-infinite vortex sheet. Actually Crighton 
& Leppington (1974) and Morgan (1974) have examined the compressible 
problem in which an impulsive line source is located in fluid at rest. Unfortu- 
nately their results contain ultradistributions, which, together with the absence 
of a mean flow, make them difficult to interpret in terms of a more realistic 
aerodynamic source problem. 

Let (ul, vl) and (a2, v2) denote the ( 1, 2) components of the perturbation velo- 
cities a t  points respectively on the upper and lower surfaces of the plate and the 
vortex sheet. These velocities are related by the vorticity equation 

curl{pDv/Dt) = 0, (5.6) 

which in linearized form reduces to 

on the mean position x2 = 0, x1 > 0 of the vortex sheet. The kinematic condition 
that the sheet should coincide with an instantaneous streamline is 

which is formally valid along the whole of the xl axis, since v1 and c2 vanish 
identically for x1 < 0. 

It will be assumed that all components of the perturbation velocities have at 
worst integrable singularities at the edge of the plate. The imposition of a Kutta 
condition will lead to the additional requirement that v1 and v2 vanish a t  the edge. 

Next observe that the incompressible flow in x2 < 0 contains no singularities, 
so that Cauchy’s theorem applied to a large semicircular contour in the lower half 
of the z = xl+ix2 plane provides the following well-known relation between 

the principal value integral being taken along the + x1 axis (cf. Bechert & Michel 
1975). In  order to obtain a similar connexion between the velocity components 
on the side x2 = + 0 of the xl axis, we first write (ul, vl) in the form 

u1 = uo + us, v1 = vo +us. (5.10) 

Here (us, v,) is defined to be the velocity perturbation due to the incident vortex 
in the absence of a mean vortex sheet, i.e. the perturbation expressed by the first 
term of (4.1). Then u, - iv,, regarded as a function of the complex variable z, has 
a simple pole a t  the position zo = U,t+ih of the vortex, and a branch cut 
extending along the real axis from - co to the edge of the plate. Thus the appro- 
priate contour of integration for the application of Cauchy’s theorem is the same 
as that leading to (5.9), and we have 

(5.11) 
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where the notation 2us(x1) indicates that, for x1 < 0, 2~s(x1) is the velocity 
perturbation on the lower side x2 = - 0 of the plate. If lus(xl) is the xl component 
of the vortex-induced velocity on x2 = + 0, then clearly for 

x1 ' 0, 1us(x1) = 2uAx1). 

The remaining component uo - iv, of the complex velocity on x2 = i- 0 must 
represent the boundary value of a function which is regular in the upper half 
z plane, and in this case we have 

Introduce the definition 

%(x1) = uo(x1) + 2u,(x1), 

(5.12) 

(5.13) 

in which case 4Yl(x1) =- ul(xl) for x1 > 0. Since we have also 

Wx1) = Ul(XI) + {2zGs("l) - 1us(x1)), (5.14) 

it follows that, if ul(xl) is integrable at the edge of the plate, so is 4Yl(xl) because 
2us(xl) - lu,(xl) possesses an inverse square-root singularity there (Lamb 1932, 
chap. 4). The definitions (5.10) and (5.13) may now be combined with (5.11) and 

(5.15) 

Thus, since ul(xI) = 4V1(x1) in x1 > 0, (5.7)-(5.9) and (5.15) constitute a com- 
plete system sufficing to determine the motion of the vortex sheet under the 
driving influence of the line vortex expressed through the velocity component 
vs(zl). It is assumed that w,(xl) is prescribed, and that a causal solution is required. 

The solution is time dependent because of the dependence of us(xl) on the 
instantaneous location of the vortex. In  order to solve the problem we employ 
the double Fourier transformf(k) of a functionf(x,, t )  defined by the reciprocal 
relations 

(5.16) I 
i 

m 1 
f ( k )  = (zn)z JJ f(x1, t )  exp { - i W 1  - "t))dxl& 

- m  

f(xl, t )  = lr f(k) exp {i(kxl - wt)> dk dw, 
- m  

where, for convenience, the dependence off(k) on w is not shown explicitly. It is 
also necessary to make use of the following notation familiar in applications of 
the Wiener-Hopf technique (Noble 1958): 

f ( k )  = f + @ )  +f-(k)t (5.17) 

(5.18) 

m where 1 
j+(k)  = -So cixlS f(xl,t) exp{-i(kx,-wt))dt, 

(277.)' - m  - m  

f - @ )  = &2J0mdx1J1mf(x1,t) exP(- i (k~,-4}dt ,  

in which case f * ( k )  are respectively regular functions in the upper and lower 
halves of the k plane. It should be noted that these definitions involve the assump- 
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tion that the integrals do in fact converge as t + f CQ. We ensure that this is the 
case by assuming that the incident vortex is created instantaneously at time 
t = to, which is subsequently allowed to tend to -a, and by assuming further 
that w lies in a suitable region of the upper half-plane in order for convergence to 
be achieved at t = + co. The satisfaction of the causality condition requires that 
the Fourier time transform be regular in the upper halfw plane (Lighthill 1960), so 
that, having solved the problem for this particular choice of w, the solution is 
extended to the whole plane by analytic continuation. This is the procedure used 
by Crighton & Leppington (1974). 

Take the Fourier transforms of (5.7) and (5.8): 

p1@- v,k)Uii(k)-p,(w- v,k)u,(k) = c, (5.19) 

(W - U2k) ~i(k) - (w-  U,k) v;(k) = 0, (5.20) 

where C = C(w) = p1 Ulul(xl, w )  -p2U2u2(x1, w )  evaluated a t  x1 = + 0, and is 
independent of k, since (5.7) requires that any integrable singularities in the terms 
of this difference are equal. Similarly, noting that ur(k) = @ ~ ( k ) ,  the transforms 
of (5.9) and (5.15) are 

u2(k) = u$(k)+u;(k) = isgn(k)v;(k), (5.21) 

@l(k) = @$( k) + u,(k) = - i sgn (k) v:(k) + 2 i  sgn (k) v;(k). (5.22) 

In  order to apply the usual Wiener-Hopf argument we introduce the identity 

sgn k = Jim (k2 + s2)*/k, 
s++o 

(5.23) 

where (k2 +s2)* = (k + is)* (k - is)# and branch cuts are taken in the lower and 
upper half-planes respectively in such a manner that (k .t is)*+ + kt as k - t  00 

along the positive real axis. The analysis is conducted for non-zero E ,  after which 
the limit implied in (5.23) is taken. 

Substituting for %-(k) and u;(k) from (5.21) and (5.22) into (5.19), we have for 
real k 

- i ( k  - iE)-*  {p2(0 - u2 k) v; (k) +p1(w - v, k) v r  (k) - 2p1(0 - v, k) v;(k)) 

= (k + i~) -*  {C + pl( w - Ul k) @f (k) - p2( w - ?I2 k) ~ a f  (k)}. (5.24) 

By construction the left-hand side of this equation is regular in the lower half of 
the k plane and the right-hand side is regular in the upper half-plane. Together 
they therefore define a function which is regular everywhere. AIso the perturba- 
tion velocities possess only integrable singularities at the edge of the plate, and it 
follows (Noble 1958, p. 36) that their half-range transforms are at most finite as 
k+m. Thus both sides of (5.24) grow no faster than 7ci at infinity. The usual 
Wiener-Hopf argument involving Liouville’s theorem then implies that both 
sides are actually constant, and we may write 

PI(@- U,k)v,-(k)+p,(o-U,k)vz(k)  = 2 p , ( w - U , k ) ~ , - ( k ) + P ( k - i ~ ) * ,  (5.25) 

P being an arbitrary constant. 
If v,(xl) is set equal to zero, so that there is no external forcing of the vortex 

sheet, the solution of our equations for non-zero P corresponds to the eigen- 
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solution discussed by Crighton (1972) and at the beginning of this section. Equa- 
tions (5.21) and (5.25) imply that in this case v,(k) and v g ( k )  behave like k-* for 
large k, a condition which indicates that vl(xl) and w2(x1) possess inverse square- 
root singularities at the edge of the plate (Noble 1958, p. 36). It therefore 
follows that it is impossible to impose a Kutta condition in the absence of external 
forcing. On the other hand, when the incident vortex is present it has already been 
noted that ~~(2,) = O(xi*) at the edge, which means that v;(k) - a / ( k  -ie)*, say, 
for large k. Thus the Kutta condition may now be satisfied if P is chosen such that 

P = 2ap,u1. (5.26) 

Combining (5.20) and (5.25) we have 

1 (5.27) 

and corresponding expressions for %l(k) and u,(k) can be written down by 
making use of (5.21)-(5.23). Observe that the condition of regularity of v,(k) and 
v,(k) in the lower half of the k plane requires that w lie in an appropriate region 
of the upper half-plane. Indeed, i t  may readily be shown that the zeros of the 
denominator in (5.27) lie at the conjugate points 

k = W ( E  2 ip), (5.28) 

where 
(5.29) 

so that the corresponding singularities will be located in the upper half of the 
k plane if x < argw < n-X, where x = arg(a+iI/?l). 

We are now in a position to write down a formal expression for the Fourier 
transform of [8575/8t]i, the strength of the non-trivial wake source term on the 
right of the inhomogeneouswave equation (2.16). Denote this transform by X‘(k); 
then S’(k) = ( - 4 4  {Ul(k) - %(k)l. (5.30) 

But (5.15) shows that in the wake (x, > 0 )  the inverse transforms of u,(k) and 
%,(k) are the same function of x,. Hence we may take 

S(k) = ( - w / k )  {@l(k) - U z ( k ) )  (5.31) 

instead of S’(k), a result which may also be expressed in the form 

S(k)  = i w k - y k 2 + € 2 ) + { v ~ ( k )  +v;(k)-2v,-(k)}. (5.32) 

Substituting for v,(k) and v;(k) from (5.27), i t  follows that for x1 > 0, the 
Fourier time transform (denoted by a tilde) of [8575/8t]i is just 
rv 

[ g] 1 = jmm s(~c) eikx d7c 
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We shall see below that for x1 > 0 this integral can be evaluated by displacing 
the contour of integration in the k plane to + ico, the value of the integral being 
determined by simple poles of the integrand. Two of these poles correspond to 
the zeros of pl(w- Ulk)2+p,(w- UZk),  given by (5.28), which for real w charac- 
terize the Kelvin-Helmholtz instability of the vortex sheet. The final determina- 
tion of [a$/at]i then involves the calculation of inverse Fourier time transforms 
of the form 

I = JI ~ ( w >  exp [iw{(a + ip)xl  - t>] dw, (5.34) 

where F(w)  is a known function of w which is analytic in the upper half-plane. 
The range of integration is no longer restricted to the wedge within which w was 
originally confined to ensure convergence of the Fourier integral (5.16), and it is 
apparent that in its present form (5.34) actually diverges. 

This divergence of the integral representation of the solution is related to the 
difficulty already encountered at the beginning of this section. It has been recog- 
nized in a similar context by Jones & Morgan (1972, 1974) and by Crighton & 
Leppington (1974), who examined the case of an impulsively excited vortex 
sheet, and resolved the difficulty by the introduction of ultradistributions. 

The reason for the divergence can be understood by first noting that 
pl(w - Ul k), +pz(w - U, k)2  is the operational form of a partial differential operator. 
If y(x,,t) denotes the elevation of the vortex sheet above its mean position 
x2 = 0, then after any initial disturbance q satisfies the equation 

(5.35) 

This is an elliptic partial differential equation with complex characteristics (see, 
for example, Garabedian 1964, p. 614) and the question of ascertaining the 
response q(xl,t) of the sheet to some initial disturbance constitutes what 
Hadamard (1952, 8 21) has termed an incorrectly posed Cauchy problem. Such 
problems have arisen, for example, in connexion with the determination of the 
stand-off distance of a bow shock wave (Garabedian & Lieberstein 1958; 
Lieberstein 1959) and in the nonlinear theory of weakly modulated deep-water 
waves (Howe 1967). Their analysis generally proceeds by way of the method of 
characteristics; in the present case these are straight lines in the three- 
dimensional space spanned by time and the real and imaginary components of xl. 
The existence of a solution thus depends on the possibility of analytically con- 
tinuing the initial conditions of the problem to complex values of xl. The fact that 
arbitrarily small changes in the definition of a function for real values of xl can 
produce exponentially large, if not singular behaviour in the complex plane is 
a reflexion of the basic instability of these problems. 

In the problem of the semi-infinite vortex sheet considered here it is now clear 
that a meaningful solution is possible only if the initial data, specified in this 
instance by the vortex-induced velocity component vs(xl), possess an appropriate 
analytic continuation. Thus the presence of p in the integral representation 
(5.34) implies that the solution of the problem is determined by the initial data, 
contained implicitly in F(w) ,  evaluated a t  complex values of the argument. 



736 M .  S. Howe 

When a solution exists it is determined by calculating the integral in (5.34) for 
B = 0, the general case being obtained subsequently by analytic continuation. 
This is equivalent to introducing a continuation (or shift) operator 

exp { - iPxl +t} 

and writing (5.34) in terms of the convergent integral 

I = exp { - ipxl$) J” ~ ( w )  exp { i w ( m l  - t)>dw. (5.36) 
- m  

Generation of sound by a convecting line vortex 

We are now ready to calculate the sound radiated when the vortex of figure 2 
convects past the edge of the plate. This is given by the solution of the wave 
equation (2,16), with [a$/at]; determined by the inverse Fourier time transform 
of (5.33). The first term on the right of (2.16) accounts for the direct radiation 
from the line vortex. The corresponding pressure perturbation in the ambient 
medium (x2 < 0) is obtained by convolution with the half-plane Green’s function 
(2.24) in the manner described in $4,  and we have [cf. (4.10)] 

(5.37) 

(R, 0)  being the polar co-ordinates of the observation point in x2 < 0 and (Ro, 0,) 
those of the line vortex a t  the retarded time t - R/c2( 1 + M2 cos 0) .  

In  order to use (5.33) to determine the radiation from the wake we must first 
calculate the transform v;(k) of the velocity vs(xl, t )  induced by the line vortex 
on x,  = 0, x1 > 0 in the absence of a mean vortex sheet. To do this introduce a 
representation of the line vortex in terms of an infinite array of harmonic vortices 
distributed along x, = h, viz. 

r i H ( t  - y , /q )  q x l  - q t )  qx, - h), (5.38) 

where yo = q t , ,  to being the time a t  which the incident vortex is created, which 
is subsequently allowed to tend to - co. 

Using (5.38) and the known form for v,(xl)  for each of the harmonic line 
vortices [cf. (4.11)], it is a straightforward matter to show that 

(5.39) 
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Substituting for v;(k) in (6.33) we have 

(5.41) 

a result which demonstrates explicitly that the integrand is regular in the upper 
half-plane except for simple poles a t  k = w/U,, w ( a + i B )  provided that o is 
restricted to lie within the wedge defined by the inequality following (5.29). 

Consider first the contribution to the radiated sound from the second term in 
the curly brackets in (5.41). This has a simple pole at k = w/& but no contribu- 
tion from the poles due to the Kelvin-Helmholtz instability. Evaluating the 
residue, the inverse Fourier time transform then gives the contribution 
2[aq5/at]i, say, of this term to the wake source strength [a+/at];, viz. 

(5.42) 

Substituting this into (2.16) and performing the convolution with the half-plane 
Green's function (2.24) we find that the corresponding contribution p 2  to the 
wake-generated sound is just 

where use has been made of (5.40) and [t] denotes the retarded time 

t -R/c , ( l  +M2c0s0). 

The integration with respect to w yields a &function, after which it follows that 

(5.44) 

the term in square brackets being evaluated at the retarded position of the line 
vortex. 

Comparing this with the expression (5.37) for the direct vortex sound pr, we 
see that the combination pr  +p2 vanishes identically for arbitrary vortex con- 
vection velocity V,, and therefore that the net radiated sound intensity is 
determined solely by the wake source strength ,[a$/at];, corresponding to the 
first term in the curly brackets of (5.41). 

Recall that we have not as yet imposed a Kutta condition at the edge of the 
plate. Reference to (5.27) and the steps leading to (5.41) reveals that the imposi- 
tion of this condition implies that the constant P be chosen in such a way that 

w -  U,k 
P -  ip, U, J(w) (-I+ w-U,k 0 

as k -+ co, which means that 
P = ip, U, J(w).  

47 

(5.45) 
F L M  76 
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These conclusions clarify the significance of the vortex convection velocity V,. 
When Us equals the velocity U, of the mean stream in which the line vortex is 
embedded, it is apparent that the choice (5.45) of P involves also the vanishing 
of the first term in the curly brackets of (5.41) for all values of k. Consequently the 
corresponding contribution p1 to the acoustic pressure field is identically zero. 
We have already seen that pr  +p2 = 0, and we therefore arrive at the remarkable 
prediction that, on the present linearized theory, when the Kutta condition is 
imposed, no sound is  produced during the passage of the vortex past the edge of the 
plate. This is a generalization of the result obtained in 3 4 in the absence of a 
mean vortex wake, and indicates that any sound which is in fact produced arises 
as a result of nonlinear effects, and is then of order pov2, where v << U is the 
characteristic perturbation velocity. 

It is also clear that when V,  = U, the right-hand sides of equations (5.27) are 
also zero, thereby implying further that the x2 components v,(x,, t )  and v2(xl, t )  
of the perturbation velocities vanish at all points of the plate and wake. Again 
this is in accord with the result of 3 4. Thus, in the linearized approximation, the 
imposition of the Kutta condition leads to a situation in which the perturbed 
motion of the fluid is steady in a frame convecting with the line vortex, in which 
case no sound is produced. 

To complete the analysis of this section we now determine the radiation for 
Us += U, in the two cases in which (i) a Kutta condition is not imposed, for which 
we set P = 0, and (ii) the condition is imposed by the choice of P given in (5.45). 
The details of the calculations are similar to those outlined above, formally 
divergent convolution integrals being evaluated by means of the interpretation 
(5.36), which is equivalent to the procedure used a t  the beginning of this section 
in the discussion of Crighton’s (1972) problem of the semi-inhite vortex 
sheet. 

Case (i). No Kutta condition imposed. The acoustic pressure a t  (R,0)  in x2 < 0 is 
given by 

P 
p2 7 ~ (  1 + M, cos 0) p1 +p2 

-rU,sinfr6 ( -- p1 )[c0;;0,,] - =  
9 (5.46) 

the term in square brackets being evaluated at the retarded position of the 
vortex. If the direct radiation from the vortex (5.37) is subtracted from this 
result, it  follows that the additional sound produced by the presence of the 
wake is 

(5.47) 

This term arises from the interaction between the incompressible edge flow 
induced by the line vortex and the infinite density gradient across the wake. It is 
entirely equivalent to results obtained long ago by Rayleigh (1945, $ 3  296,335), 
who discussed scattering by spherical and cylindrical density inhomogeneities. 
More recently mechanisms of this sort have been considered in the theory of jet 
noise by Morfey (1973), Ffowcs Williams & Howe (1975) and Howe (19753). 

Case (ii). Kutta condition imposed. The acoustic pressure, which vanishes 
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identically when U, = U., is given by 

(5.48) 

Subtracting the direct radiation from the line vortex, the field associated with 
the wake can be expressed in the form 

. (5.49) 

The first term on the right is just the density-scattered radiation of (5.47). The 
second term is the additional contribution due to the imposition of the Kutta 
condition and arises from the vorticity shed from the edge of the plate. 

In  both case (i) and case (ii) the sound pressurep varies as pzvU,  where v and U 
respectively characterize the velocities of the perturbed and mean flows. This is 
typical of the parametric dependence of the Aeolian sounds associated with two- 
dimensional eddies near a rigid half-plane (Ffowcs Williams 1969). 

In  conclusion let us note that, although we have presented no details, it is 
a relatively simple matter to determine the explicit form of the disturbed incom- 
pressible motion of the vortex sheet. In  both of the above cases the sheet exhibits 
no unbounded unstable growth as a result of the passage of the vortex. This is 
obvious when the Kutta condition is imposed and U, = U,. In  other cases, when 
the line vortex is far downstream of the edge, the disturbed flow in the wake is 
steady in a frame translating with the vortex. The absence of instabilities is a 
consequence of the rather good analytic properties of the vortex-induced forcing 
velocity vs(xl, t )  for complex values of x,. Of course, these remarks are strictly 
appropriate only in the context of the present linear theory. In  practice insta- 
bilities will develop because of nonlinear effects, although for a sufficiently weak 
incident vortex, or high mean-flow velocity, this could well occur far downstream 
and involve no substantial diffractively amplified acoustic radiation. 

6. Conclusion 
In  this paper we have discussed the linear two-dimensional theory of the 

generation of sound during the convection of a frozen turbulent eddy past both 
finite and semi-infinite rigid plates, with and without the application of a Kutta 
condition and with and without the presence of a mean vortex sheet in the wake. 
It has been argued that this constitutes a more realistic model of a mean-flowledge 
interaction involving a convected turbulent quadrupole than one which assumes 
the quadrupole to be a line source fixed relative to the plate. There are significant 
effects of convection. To the order of approximation to which the sound from 
aerodynamic sources near a scattering body is usually estimated, the imposition 
of a Kutta condition leads to the complete cancellation of the sound generated 
when frozen turbulence convects past a semi-infinite plate, and to the cancella- 
tion of the diffraction field due to the trailing edge in the case of an airfoil of 

47-2 
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compact chord. The cancellation is brought about by the shed vorticity, which 
smooths out large pressure gradients in the vieinity of the trailing edge. 

This work was supported by the Bristol Engine Division of Rolls-Royce 
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